
Spring 2017 MATH5012

Real Analysis II

Solution to Exercise 2

Here µ is a Radon measure on Rn. Many problems are taken from [R1].

(1) Use maximal function to give another proof of Lebesgue differentiation theorem.

Setting

(Trf)(x) =
1

µ(Br(x))

∫
Br(x)

|f − f(x)|dµ ,

and

(Tf)(x) = lim sup
r→0

(Trf)(x) .

Show that Trf = 0 µ-a.e.. Suggestion: For ε > 0, pick continuous g such that

‖f − g‖L1 < ε and establish Tf(x) ≤ Mh(x) + |h|(x) where h = f − g. Then use

7(a) in Ex 1.

Solution. Explained in class, or look up [R1].

(2) Let E be µ-measurable. Show that µ-a.e. x ∈ Rn \ E has density 0 in E.

Solution. Apply to the complement of the set and use the result on density 1.

(3) Let F be closed in Rn and d(x, F ) the distance from x to F ,

d(x, F ) = inf {|x− y| : y ∈ F} .

(a) Show that

|d(x, F )− d(y, F )| ≤ |x− y| , ∀x, y ∈ Rn .

(b) Let x be a point of density 1 of F ⊂ R. Show that

|d(y, F )− d(x, F )|
|y − x|

→ 0 as y → x.
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Solution. Note that I have modified this problem. First of all, as F is closed, for

each x ∈ Rn, there exists some z ∈ F such that d(x, F ) = |x− z|. Then

d(y, F ) ≤ |y − z| ≤ |y − x|+ |x− z| = |y − x|+ d(x, F ) ,

and so d(y, F )− d(x, F ) ≤ |x− y|. The full inequality follows from switching x and

y.

Note. It is impressive that the distance function is always Lipschitz continuous with

Lipschitz constant 1.

Next, take n = 1. Let x be a point of density 1 for F , so d(x, F ) = 0 and it has

zero density with respect to the complement of F, F ′. For small ε > 0, there exists

some δ0 such that

L1(F ′ ∩ [x− δ, x+ δ])

2δ
< ε , ∀0 < δ ≤ δ0 .

We claim that for each y = x+ δ, δ ≤ δ0, F ∩ [y− δε, y+ εδ] 6= φ. For, if it is empty,

that means [y − εδ, y + εδ] is contained in F ′ so

L1(F ′ ∩ [x− δ, x+ δ])

2δ
≥ L

1[y − εδ, y + εδ]

2δ
= ε ,

contradiction holds. It follows that

d(y, F ) = d(x+ δ) ≤ εδ ,

that is,
|d(x+ δ, F )− d(x, F )|

δ
≤ ε ,

and the conclusion follows. The same argument applies to the point x− δ.

(4) For δ > 0, let I(δ) = (−δ, δ). Given α and β, 0 ≤ α < β ≤ 1, construct a

measurable set E so that the upper and lower limits of L1(E ∩ I(δ))/2δ are equal

2



to α and β respectively as δ → 0.

Solution. By reflecting about the origin if necessary, it suffices to consider the

following function f(δ) = L1(E ∩ [0, δ))/δ, where E ⊆ [0,∞). For 0 < α < β < 1,

let r =
α

β

(1− β
1− α

)
∈ (0, 1) and <

α

β
, γn = rn and ln = γn −

β

α
γn+1. Observe that ln

satisfies the following inequalities

γn − γn+1 > ln = γn −
β

α
γn+1 > 0.

Let E be
∞⋃
n=1

[γn − ln, γn]. We first show that f(γn) = β, ∀n,

L1(E ∩ [0, γn)) =
∞∑
k=n

lk =
∞∑
k=n

γk −
β

α

∞∑
k=n+1

γk

= γn +
α− β
α

∞∑
k=n+1

γk = βγn

Hence f(γn) = β. Next we will show that f(γn − ln) = α, by definition of ln

L1(E ∩ [0, γn − ln)) = βγn+1 = αγn − αln

we have f(γn − ln) = α. We try to show that f attains maximum and minimum

at γn and γn − ln respectively. ∀δ ∈ [γn+1, γn − ln], L1(E ∩ [0, δ)) is fixed, so f is

decreasing on [γn+1, γn − ln]. If δ ∈ [γn − ln, γn],

f(δ) =
βγn − γn + δ

δ
= 1− (1− β)

γn
δ

we have f is increasing on [γn − ln, γn] and we have the following inequalities

α ≤ f(δ) ≤ β

with first equality holds when δ = γn − ln and second equality holds when δ = γn.
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Result follows.

For the other cases (either α = 0 or β = 1), we may consider 2 strictly monotonic

sequences, αk ↓ α and βk ↑ β such that αm < βn,∀n,m. And let

rk :=
αk

2βk+1

(
1− βk

1− αk+1

)
and γk+1 := rkγk with γ1 = 1.

We immediately have γk → 0 as k →∞ and

γk+1 < min{ αk

βk+1

,
1− βk

1− αk+1

}γk

With the above inequality, we may define l2n−1 := α2n−1γ2n−1 − β2nγ2n and l2n :=

β2nγ2n − α2n+1γ2n+1 which satisfy

γn − γn+1 > ln > 0,∀n,

∑
k=2n−1

lk = α2n−1γ2n−1 and
∑
k=2n

lk = β2nγ2n.

We may consider

E =


∞⋃
n=1

[γn − ln, γn] if α = 0

∞⋃
n=1

[γn+1, γn+1 + ln] if β = 1

then we have f(γ2n−1) = α2n−1 and f(γ2n) = β2n. Result follows from similar argu-

ments as before.

(5) IfA ⊂ R1 andB ⊂ R1, defineA+B = {a+ b : a ∈ A, b ∈ B}. Supposem(a) > 0,

m(b) > 0. Prove that A+B contains a segment, by completing the outline given in

[R1].

Solution. Follow the hint in [R1].

(6) A point x ∈ Rn is called an atom for a measure λ if λ({x}) > 0. Establish the
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decomposition

µ = fLn + µcs +
∑
k

akδxk
, ak > 0,

where f ∈ L1(Ln) and µcs has no atoms.

Solution. By Radon-Nikodym we have the decomposition µ = fLn + µs where

µs ⊥ Ln. Let Ak = {x : µs({x}) > 0, |x| ≤ k} and A =
⋃

k Ak. We claim that each

Ak is a finite set. For let us pick N many points from Ak. We have

∞ > µs(Bk(0)) ≥ N × 1

k
,

which shows that N has an finite upper bound. Here we have used the fact that µs

is Radon so that it is finite on balls. Now we know that A is a countable set {xj}.

Setting

µd =
∑
j

ajδxj
, aj = µs({xj}) ,

the conclusion follows by letting µcs = µs − µd .

(7) Let {xn} be an infinite sequence of distinct numbers in [0, 1]. Can you find an

increasing function in [0, 1] whose discontinuity set is precisely {xn}?

Solution. Put µ =
∑

2−nδxn where R = {xn}∞n=1. Define

F (x) = µ(−∞, x) =
∑
xk<x

1

2k
,

be a function on R. Now fix an x 6∈ R. Let ε > 0 be given. There exists N such

that
∞∑
N

2−n < ε.

Then since x 6∈ R, we can choose δ > 0 such that x1, · · · , xN−1 6∈ [x− δ, x+ δ). Now

whenever x < y < x+ δ,

F (y)− F (x) = µ[x, y) ≤ µ[x− δ, x+ δ) < ε.
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Similarly, we also have

F (x)− F (y) < ε

whenever x− δ < y < x. Hence F is continuous outside R.

But for every x ∈ R, whenever y > x,

F (y)− F (x) = µ[x, y) ≥ 2−k

for some k. This shows that F is not continuous at every point in R.

(8) (a) Consider the real line. Show that x is not an atom for µ if and only if its

distribution function is continuous at x. Use (a) to construct a singular measure,

that is, perpendicular to L1, without atoms. Suggestion: Consider the Cantor-

Lebesgue function.

Solution. Refer to [R1]. This is an important example.

(9) Let µ be a singular measure with respect to L1 and f its distribution function.

Show that for µ-a.e. x, either f ′+ or f ′− becomes ∞.

Solution. Let A∗ be the support of µ. We know that L1(A∗) = 0 and µ(E) =

µ(E ∩ A∗). Let

Ck = {x : Dµ(x) ≤ k} , C =
⋃
k

Ck .

(We have dropped the subscript L1 in D.) We claim that µk(C) = 0 for every k.

Indeed, applying Lemma 6.5 to the set Ck ∩ A∗, we obtain

µ(Ck) = µ(Ck ∩ A∗) ≤ kL1(Ck ∩ A∗) ≤ kL1(A∗) = 0 .

It follows that µ(C) = 0. Therefore, for µ-a.e. x, Dµ(x) =∞. Using definition,

µ[x− δn, x+ δn]

2δn
→∞,
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for some δn → 0. In other words,

f(x+ δn)− f(x− δn) + µ({x+ δn})
2δn

→∞ .

Since µ is singular, even if µ({x + δn}) > 0, we can find a point y arbitrarily close

to x+ δn such that µ({y}) = 0. In view of this, we may assume µ({x+ δn}) = 0, so

f(x+ δn)− f(x− δn)

2δn
→∞ , as n→∞ .

On the other hand, if f ′+(x) and f ′−(x) are bounded, we have

f(x+ δ) = f(x) + f ′+(x)δ + ◦(δ) , f(x− δ) = f(x)− f ′−(x)δ + ◦(δ) ,

which implies

f(x+ δn)− f(x− δn) = (f ′+(x) + f ′−(x))δn + ◦(δn),

so
f(x+ δn)− f(x− δn)

2δn
≤ |f ′+(x)|+ |f ′−(x)|+ 1 ,

for all large n, contradiction holds. We conclude either f ′+(x) or f−(x) must blow

up.

Note. See [R1] theorem 7.15 for a related result.

(10) Construct a continuous monotonic function F or R1 so that F is not constant

on any segment although F ′(x) = 0 a.e.

Solution. Let

An =

{
k

2n
: k = 0, 1, · · · , 2n

}
⊂ [0, 1], n ≥ 0 , A =

⋃
n

An .

Here A is the set of all rational binary numbers. In the following we define a sequence
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of continuous, piecewise functions Fn by assigning their values at An. First, define

F0(x) = x so that F0(0) = 0 and F0(1) = 1. Assuming Fn−1(x) has been defined for

x ∈ An−1, Fn(x) is defined as follows, if x = 2k/2n, then Fn(x) = Fn−1(k/2
n−1) and,

if x = (2k + 1)/2n, then

Fn

(
2k + 1

2n

)
=

1

4
Fn−1

(
k

2n−1

)
+

3

4
Fn−1

(
k + 1

2n−1

)
.

At this point you better sketch the graphs of the first several Fn. Keep in mind that

whenever k/2n appears in some previous Am, say, k/2n = j/2m,m < n, Fn(k/2n) =

Fm(j/2m) . You can see that each Fn is strictly increasing, Fn(x) < Fn+1(x) for all

x ∈ (0, 1), so that

F (x) = lim
n→∞

Fn(x) = sup
n
Fn(x)

is well-defined on [0, 1]. Clearly 0 ≤ F (x) ≤ 1 and F (x) = Fn(x) for x = k/2n.

Claim 1: F is strictly increasing. For, let x < y, we can find a large n and some k

so that

x <
k

2n
<
k + 1

2n
< y ,

so

F (x) ≤ F

(
k

2n

)
= Fn

(
k

2n

)
< Fn

(
k + 1

2n

)
= F

(
k + 1

2n

)
≤ F (y) .

Claim 2: F is continuous. Consider 2k/2n < (2k + 1)/2n < (2k + 2)/2n. We have

F

(
2k + 1

2n

)
− F

(
2k

2n

)
=

1

4
F

(
k

2n−1

)
+

3

4
F

(
k + 1

2n−1

)
− F

(
2k

2n

)
=

3

4

(
F

(
k + 1

2n−1

)
− F

(
k

2n−1

))
,

and

F

(
2k + 2

2n

)
− F

(
2k + 1

2n

)
= F

(
k + 1

2n−1

)
−
(

1

4
F

(
k

2n−1

)
+

3

4
F

(
k + 1

2n−1

))
=

1

4

(
F

(
k + 1

2n−1

)
− F

(
k

2n−1

))
.
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Therefore, for any two consecutive binary rational numbers in the same An,∣∣∣∣F (2k + 1

2n

)
− F

(
2k

2n

)∣∣∣∣ ≤ (3

4

)n

. (1)

Now, if F is discontinuous, as an increasing function, it must be a jump discontinuity.

At such x, F (x+) − F (x−) ≥ ρ0 > 0 for some ρ. However, for each n we can find

some k = 0, · · · , 2n such that k/2n ≤ x < (k + 1)/2n or k/2n < x ≤ (k + 1)/2n. In

view of (1),

F (x+)− F (x−) = lim
n→∞

(
F

(
k + 1

2n

)
− F

(
k

2n

))
→ 0 ,

contradiction holds. Hence F must be continuous.

According to general theory, F is differentiable almost everywhere. Let I be the

collection of all binary irrational numbers, that is, x ∈ I if its binary expansion

contains infinitely many 0 and 1. It is a set of full measure. Therefore, the set of all

binary irrational numbers at which F is differentiable is also a set of full measure.

Let us denote it by J .

Claim 3: F ′(x) = 0 for x ∈ J . First, we observe that for x ∈ J, there exist binary

rational numbers αn, βn, where βn = αn + 1/2n satisfying

αn < x < βn ,

for all n. Moreover,

αn =
z1
2

+ · · ·+ zn
2n

, zj ∈ {0, 1} ,

and one must have either (a) αn = αn−1, βn = βn−1 + 1/2n, or (b) αn = αn−1 +

1/2n, βn = βn−1 . A review on the construction of the approximation to x by plotting

the first several steps will convince you these facts.
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In the case (a), we have

F (βn)− F (αn) =
1

4

(
F (αn−1) +

3

4
F (βn−1)

)
− F (αn−1)

=
3

4
(F (βn−1)− F (αn−1)) ,

and, in the case (b),

F (βn)− F (αn) = F (βn−1)−
(

1

4
F (αn−1) +

3

4
F (βn−1)

)
=

1

4
(F (βn−1)− F (αn−1)) .

As F is differentiable and increasing, F ′(x) ∈ [0,∞). If F ′(x) > 0, the sequence

an =
F (αn)− F (βn)

βn − αn

→ F ′(x) , as n→∞ .

It follows that an/an−1 → 1 as n → ∞. However, the relations above tell us that

an/an−1 = 1/2 or 3/2, which never converges to 1. Hence F ′(x) must vanish.

Note. This example is a special case of an example in 18.6 in [HS].
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