Spring 2017 MATH5012

Real Analysis II

Solution to Exercise 2

Here μ is a Radon measure on \mathbb{R}^{n}. Many problems are taken from [R1].
(1) Use maximal function to give another proof of Lebesgue differentiation theorem. Setting

$$
\left(T_{r} f\right)(x)=\frac{1}{\mu\left(\bar{B}_{r}(x)\right)} \int_{\bar{B}_{r}(x)}|f-f(x)| d \mu
$$

and

$$
(T f)(x)=\limsup _{r \rightarrow 0}\left(T_{r} f\right)(x)
$$

Show that $T_{r} f=0 \mu$-a.e.. Suggestion: For $\varepsilon>0$, pick continuous g such that $\|f-g\|_{L^{1}}<\varepsilon$ and establish $T f(x) \leq M h(x)+|h|(x)$ where $h=f-g$. Then use 7(a) in Ex 1.

Solution. Explained in class, or look up [R1].
(2) Let E be μ-measurable. Show that μ-a.e. $x \in \mathbb{R}^{n} \backslash E$ has density 0 in E.

Solution. Apply to the complement of the set and use the result on density 1.
(3) Let F be closed in \mathbb{R}^{n} and $d(x, F)$ the distance from x to F,

$$
d(x, F)=\inf \{|x-y|: y \in F\}
$$

(a) Show that

$$
|d(x, F)-d(y, F)| \leq|x-y|, \quad \forall x, y \in \mathbb{R}^{n}
$$

(b) Let x be a point of density 1 of $F \subset \mathbb{R}$. Show that

$$
\frac{|d(y, F)-d(x, F)|}{|y-x|} \rightarrow 0 \text { as } y \rightarrow x .
$$

Solution. Note that I have modified this problem. First of all, as F is closed, for each $x \in \mathbb{R}^{n}$, there exists some $z \in F$ such that $d(x, F)=|x-z|$. Then

$$
d(y, F) \leq|y-z| \leq|y-x|+|x-z|=|y-x|+d(x, F)
$$

and so $d(y, F)-d(x, F) \leq|x-y|$. The full inequality follows from switching x and y.
Note. It is impressive that the distance function is always Lipschitz continuous with Lipschitz constant 1.

Next, take $n=1$. Let x be a point of density 1 for F, so $d(x, F)=0$ and it has zero density with respect to the complement of F, F^{\prime}. For small $\varepsilon>0$, there exists some δ_{0} such that

$$
\frac{\mathcal{L}^{1}\left(F^{\prime} \cap[x-\delta, x+\delta]\right)}{2 \delta}<\varepsilon, \quad \forall 0<\delta \leq \delta_{0}
$$

We claim that for each $y=x+\delta, \delta \leq \delta_{0}, F \cap[y-\delta \varepsilon, y+\varepsilon \delta] \neq \phi$. For, if it is empty, that means $[y-\varepsilon \delta, y+\varepsilon \delta]$ is contained in F^{\prime} so

$$
\frac{\mathcal{L}^{1}\left(F^{\prime} \cap[x-\delta, x+\delta]\right)}{2 \delta} \geq \frac{\mathcal{L}^{1}[y-\varepsilon \delta, y+\varepsilon \delta]}{2 \delta}=\varepsilon
$$

contradiction holds. It follows that

$$
d(y, F)=d(x+\delta) \leq \varepsilon \delta,
$$

that is,

$$
\frac{|d(x+\delta, F)-d(x, F)|}{\delta} \leq \varepsilon
$$

and the conclusion follows. The same argument applies to the point $x-\delta$.
(4) For $\delta>0$, let $I(\delta)=(-\delta, \delta)$. Given α and $\beta, 0 \leq \alpha<\beta \leq 1$, construct a measurable set E so that the upper and lower limits of $\mathcal{L}^{1}(E \cap I(\delta)) / 2 \delta$ are equal
to α and β respectively as $\delta \rightarrow 0$.
Solution. By reflecting about the origin if necessary, it suffices to consider the following function $f(\delta)=\mathcal{L}^{1}(E \cap[0, \delta)) / \delta$, where $E \subseteq[0, \infty)$. For $0<\alpha<\beta<1$, let $r=\frac{\alpha}{\beta}\left(\frac{1-\beta}{1-\alpha}\right) \in(0,1)$ and $<\frac{\alpha}{\beta}, \gamma_{n}=r^{n}$ and $l_{n}=\gamma_{n}-\frac{\beta}{\alpha} \gamma_{n+1}$. Observe that l_{n} satisfies the following inequalities

$$
\gamma_{n}-\gamma_{n+1}>l_{n}=\gamma_{n}-\frac{\beta}{\alpha} \gamma_{n+1}>0
$$

Let E be $\bigcup_{n=1}^{\infty}\left[\gamma_{n}-l_{n}, \gamma_{n}\right]$. We first show that $f\left(\gamma_{n}\right)=\beta, \quad \forall n$,

$$
\begin{aligned}
\mathcal{L}^{1}\left(E \cap\left[0, \gamma_{n}\right)\right)=\sum_{k=n}^{\infty} l_{k} & =\sum_{k=n}^{\infty} \gamma_{k}-\frac{\beta}{\alpha} \sum_{k=n+1}^{\infty} \gamma_{k} \\
& =\gamma_{n}+\frac{\alpha-\beta}{\alpha} \sum_{k=n+1}^{\infty} \gamma_{k}=\beta \gamma_{n}
\end{aligned}
$$

Hence $f\left(\gamma_{n}\right)=\beta$. Next we will show that $f\left(\gamma_{n}-l_{n}\right)=\alpha$, by definition of l_{n}

$$
\mathcal{L}^{1}\left(E \cap\left[0, \gamma_{n}-l_{n}\right)\right)=\beta \gamma_{n+1}=\alpha \gamma_{n}-\alpha l_{n}
$$

we have $f\left(\gamma_{n}-l_{n}\right)=\alpha$. We try to show that f attains maximum and minimum at γ_{n} and $\gamma_{n}-l_{n}$ respectively. $\forall \delta \in\left[\gamma_{n+1}, \gamma_{n}-l_{n}\right], \mathcal{L}^{1}(E \cap[0, \delta))$ is fixed, so f is decreasing on $\left[\gamma_{n+1}, \gamma_{n}-l_{n}\right]$. If $\delta \in\left[\gamma_{n}-l_{n}, \gamma_{n}\right]$,

$$
f(\delta)=\frac{\beta \gamma_{n}-\gamma_{n}+\delta}{\delta}=1-(1-\beta) \frac{\gamma_{n}}{\delta}
$$

we have f is increasing on $\left[\gamma_{n}-l_{n}, \gamma_{n}\right]$ and we have the following inequalities

$$
\alpha \leq f(\delta) \leq \beta
$$

with first equality holds when $\delta=\gamma_{n}-l_{n}$ and second equality holds when $\delta=\gamma_{n}$.

Result follows.
For the other cases (either $\alpha=0$ or $\beta=1$), we may consider 2 strictly monotonic sequences, $\alpha_{k} \downarrow \alpha$ and $\beta_{k} \uparrow \beta$ such that $\alpha_{m}<\beta_{n}, \forall n, m$. And let

$$
r_{k}:=\frac{\alpha_{k}}{2 \beta_{k+1}}\left(\frac{1-\beta_{k}}{1-\alpha_{k+1}}\right) \text { and } \gamma_{k+1}:=r_{k} \gamma_{k} \text { with } \gamma_{1}=1
$$

We immediately have $\gamma_{k} \rightarrow 0$ as $k \rightarrow \infty$ and

$$
\gamma_{k+1}<\min \left\{\frac{\alpha_{k}}{\beta_{k+1}}, \frac{1-\beta_{k}}{1-\alpha_{k+1}}\right\} \gamma_{k}
$$

With the above inequality, we may define $l_{2 n-1}:=\alpha_{2 n-1} \gamma_{2 n-1}-\beta_{2 n} \gamma_{2 n}$ and $l_{2 n}:=$ $\beta_{2 n} \gamma_{2 n}-\alpha_{2 n+1} \gamma_{2 n+1}$ which satisfy

$$
\begin{gathered}
\gamma_{n}-\gamma_{n+1}>l_{n}>0, \forall n \\
\sum_{k=2 n-1} l_{k}=\alpha_{2 n-1} \gamma_{2 n-1} \text { and } \sum_{k=2 n} l_{k}=\beta_{2 n} \gamma_{2 n}
\end{gathered}
$$

We may consider

$$
E= \begin{cases}\bigcup_{n=1}^{\infty}\left[\gamma_{n}-l_{n}, \gamma_{n}\right] & \text { if } \alpha=0 \\ \bigcup_{n=1}^{\infty}\left[\gamma_{n+1}, \gamma_{n+1}+l_{n}\right] & \text { if } \beta=1\end{cases}
$$

then we have $f\left(\gamma_{2 n-1}\right)=\alpha_{2 n-1}$ and $f\left(\gamma_{2 n}\right)=\beta_{2 n}$. Result follows from similar arguments as before.
(5) If $A \subset \mathbb{R}^{1}$ and $B \subset \mathbb{R}^{1}$, define $A+B=\{a+b: a \in A, b \in B\}$. Suppose $m(a)>0$, $m(b)>0$. Prove that $A+B$ contains a segment, by completing the outline given in [R1].
Solution. Follow the hint in [R1].
(6) A point $x \in \mathbb{R}^{n}$ is called an atom for a measure λ if $\lambda(\{x\})>0$. Establish the
decomposition

$$
\mu=f \mathcal{L}^{n}+\mu_{c s}+\sum_{k} a_{k} \delta_{x_{k}}, \quad a_{k}>0
$$

where $f \in L^{1}\left(\mathcal{L}^{n}\right)$ and $\mu_{c s}$ has no atoms.
Solution. By Radon-Nikodym we have the decomposition $\mu=f \mathcal{L}^{n}+\mu_{s}$ where $\mu_{s} \perp \mathcal{L}^{n}$. Let $A_{k}=\left\{x: \mu_{s}(\{x\})>0,|x| \leq k\right\}$ and $A=\bigcup_{k} A_{k}$. We claim that each A_{k} is a finite set. For let us pick N many points from A_{k}. We have

$$
\infty>\mu_{s}\left(B_{k}(0)\right) \geq N \times \frac{1}{k}
$$

which shows that N has an finite upper bound. Here we have used the fact that μ_{s} is Radon so that it is finite on balls. Now we know that A is a countable set $\left\{x_{j}\right\}$. Setting

$$
\mu_{d}=\sum_{j} a_{j} \delta_{x_{j}}, \quad a_{j}=\mu_{s}\left(\left\{x_{j}\right\}\right),
$$

the conclusion follows by letting $\mu_{c s}=\mu_{s}-\mu_{d}$.
(7) Let $\left\{x_{n}\right\}$ be an infinite sequence of distinct numbers in $[0,1]$. Can you find an increasing function in $[0,1]$ whose discontinuity set is precisely $\left\{x_{n}\right\}$?

Solution. Put $\mu=\sum 2^{-n} \delta_{x_{n}}$ where $R=\left\{x_{n}\right\}_{n=1}^{\infty}$. Define

$$
F(x)=\mu(-\infty, x)=\sum_{x_{k}<x} \frac{1}{2^{k}}
$$

be a function on \mathbb{R}. Now fix an $x \notin R$. Let $\varepsilon>0$ be given. There exists N such that

$$
\sum_{N}^{\infty} 2^{-n}<\varepsilon
$$

Then since $x \notin R$, we can choose $\delta>0$ such that $x_{1}, \cdots, x_{N-1} \notin[x-\delta, x+\delta)$. Now whenever $x<y<x+\delta$,

$$
F(y)-F(x)=\mu[x, y) \leq \mu[x-\delta, x+\delta)<\varepsilon .
$$

Similarly, we also have

$$
F(x)-F(y)<\varepsilon
$$

whenever $x-\delta<y<x$. Hence F is continuous outside R.
But for every $x \in R$, whenever $y>x$,

$$
F(y)-F(x)=\mu[x, y) \geq 2^{-k}
$$

for some k. This shows that F is not continuous at every point in R.
(8) (a) Consider the real line. Show that x is not an atom for μ if and only if its distribution function is continuous at x. Use (a) to construct a singular measure, that is, perpendicular to \mathcal{L}^{1}, without atoms. Suggestion: Consider the CantorLebesgue function.

Solution. Refer to [R1]. This is an important example.
(9) Let μ be a singular measure with respect to \mathcal{L}^{1} and f its distribution function. Show that for μ-a.e. x, either f_{+}^{\prime} or f_{-}^{\prime} becomes ∞.

Solution. Let A^{*} be the support of μ. We know that $\mathcal{L}^{1}\left(A^{*}\right)=0$ and $\mu(E)=$ $\mu\left(E \cap A^{*}\right)$. Let

$$
C_{k}=\{x: \underline{D} \mu(x) \leq k\}, \quad C=\bigcup_{k} C_{k} .
$$

(We have dropped the subscript \mathcal{L}^{1} in \underline{D}.) We claim that $\mu_{k}(C)=0$ for every k. Indeed, applying Lemma 6.5 to the set $C_{k} \cap A^{*}$, we obtain

$$
\mu\left(C_{k}\right)=\mu\left(C_{k} \cap A^{*}\right) \leq k \mathcal{L}^{1}\left(C_{k} \cap A^{*}\right) \leq k \mathcal{L}^{1}\left(A^{*}\right)=0
$$

It follows that $\mu(C)=0$. Therefore, for μ-a.e. $x, \underline{D} \mu(x)=\infty$. Using definition,

$$
\frac{\mu\left[x-\delta_{n}, x+\delta_{n}\right]}{2 \delta_{n}} \rightarrow \infty
$$

for some $\delta_{n} \rightarrow 0$. In other words,

$$
\frac{f\left(x+\delta_{n}\right)-f\left(x-\delta_{n}\right)+\mu\left(\left\{x+\delta_{n}\right\}\right)}{2 \delta_{n}} \rightarrow \infty
$$

Since μ is singular, even if $\mu\left(\left\{x+\delta_{n}\right\}\right)>0$, we can find a point y arbitrarily close to $x+\delta_{n}$ such that $\mu(\{y\})=0$. In view of this, we may assume $\mu\left(\left\{x+\delta_{n}\right\}\right)=0$, so

$$
\frac{f\left(x+\delta_{n}\right)-f\left(x-\delta_{n}\right)}{2 \delta_{n}} \rightarrow \infty, \quad \text { as } n \rightarrow \infty
$$

On the other hand, if $f_{+}^{\prime}(x)$ and $f_{-}^{\prime}(x)$ are bounded, we have

$$
f(x+\delta)=f(x)+f_{+}^{\prime}(x) \delta+\circ(\delta), \quad f(x-\delta)=f(x)-f_{-}^{\prime}(x) \delta+\circ(\delta)
$$

which implies

$$
f\left(x+\delta_{n}\right)-f\left(x-\delta_{n}\right)=\left(f_{+}^{\prime}(x)+f_{-}^{\prime}(x)\right) \delta_{n}+\circ\left(\delta_{n}\right)
$$

so

$$
\frac{f\left(x+\delta_{n}\right)-f\left(x-\delta_{n}\right)}{2 \delta_{n}} \leq\left|f_{+}^{\prime}(x)\right|+\left|f_{-}^{\prime}(x)\right|+1
$$

for all large n, contradiction holds. We conclude either $f_{+}^{\prime}(x)$ or $f_{-}(x)$ must blow up.
Note. See [R1] theorem 7.15 for a related result.
(10) Construct a continuous monotonic function F or \mathbb{R}^{1} so that F is not constant on any segment although $F^{\prime}(x)=0$ a.e.
Solution. Let

$$
A_{n}=\left\{\frac{k}{2^{n}}: k=0,1, \cdots, 2^{n}\right\} \subset[0,1], \quad n \geq 0, \quad A=\bigcup_{n} A_{n}
$$

Here A is the set of all rational binary numbers. In the following we define a sequence
of continuous, piecewise functions F_{n} by assigning their values at A_{n}. First, define $F_{0}(x)=x$ so that $F_{0}(0)=0$ and $F_{0}(1)=1$. Assuming $F_{n-1}(x)$ has been defined for $x \in A_{n-1}, F_{n}(x)$ is defined as follows, if $x=2 k / 2^{n}$, then $F_{n}(x)=F_{n-1}\left(k / 2^{n-1}\right)$ and, if $x=(2 k+1) / 2^{n}$, then

$$
F_{n}\left(\frac{2 k+1}{2^{n}}\right)=\frac{1}{4} F_{n-1}\left(\frac{k}{2^{n-1}}\right)+\frac{3}{4} F_{n-1}\left(\frac{k+1}{2^{n-1}}\right) .
$$

At this point you better sketch the graphs of the first several F_{n}. Keep in mind that whenever $k / 2^{n}$ appears in some previous A_{m}, say, $k / 2^{n}=j / 2^{m}, m<n, F_{n}\left(k / 2^{n}\right)=$ $F_{m}\left(j / 2^{m}\right)$. You can see that each F_{n} is strictly increasing, $F_{n}(x)<F_{n+1}(x)$ for all $x \in(0,1)$, so that

$$
F(x)=\lim _{n \rightarrow \infty} F_{n}(x)=\sup _{n} F_{n}(x)
$$

is well-defined on $[0,1]$. Clearly $0 \leq F(x) \leq 1$ and $F(x)=F_{n}(x)$ for $x=k / 2^{n}$.
Claim 1: F is strictly increasing. For, let $x<y$, we can find a large n and some k so that

$$
x<\frac{k}{2^{n}}<\frac{k+1}{2^{n}}<y,
$$

so

$$
F(x) \leq F\left(\frac{k}{2^{n}}\right)=F_{n}\left(\frac{k}{2^{n}}\right)<F_{n}\left(\frac{k+1}{2^{n}}\right)=F\left(\frac{k+1}{2^{n}}\right) \leq F(y) .
$$

Claim 2: F is continuous. Consider $2 k / 2^{n}<(2 k+1) / 2^{n}<(2 k+2) / 2^{n}$. We have

$$
\begin{aligned}
F\left(\frac{2 k+1}{2^{n}}\right)-F\left(\frac{2 k}{2^{n}}\right) & =\frac{1}{4} F\left(\frac{k}{2^{n-1}}\right)+\frac{3}{4} F\left(\frac{k+1}{2^{n-1}}\right)-F\left(\frac{2 k}{2^{n}}\right) \\
& =\frac{3}{4}\left(F\left(\frac{k+1}{2^{n-1}}\right)-F\left(\frac{k}{2^{n-1}}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
F\left(\frac{2 k+2}{2^{n}}\right)-F\left(\frac{2 k+1}{2^{n}}\right) & =F\left(\frac{k+1}{2^{n-1}}\right)-\left(\frac{1}{4} F\left(\frac{k}{2^{n-1}}\right)+\frac{3}{4} F\left(\frac{k+1}{2^{n-1}}\right)\right) \\
& =\frac{1}{4}\left(F\left(\frac{k+1}{2^{n-1}}\right)-F\left(\frac{k}{2^{n-1}}\right)\right)
\end{aligned}
$$

Therefore, for any two consecutive binary rational numbers in the same A_{n},

$$
\begin{equation*}
\left|F\left(\frac{2 k+1}{2^{n}}\right)-F\left(\frac{2 k}{2^{n}}\right)\right| \leq\left(\frac{3}{4}\right)^{n} \tag{1}
\end{equation*}
$$

Now, if F is discontinuous, as an increasing function, it must be a jump discontinuity. At such $x, F\left(x^{+}\right)-F\left(x^{-}\right) \geq \rho_{0}>0$ for some ρ. However, for each n we can find some $k=0, \cdots, 2^{n}$ such that $k / 2^{n} \leq x<(k+1) / 2^{n}$ or $k / 2^{n}<x \leq(k+1) / 2^{n}$. In view of (1),

$$
F\left(x^{+}\right)-F\left(x^{-}\right)=\lim _{n \rightarrow \infty}\left(F\left(\frac{k+1}{2^{n}}\right)-F\left(\frac{k}{2^{n}}\right)\right) \rightarrow 0
$$

contradiction holds. Hence F must be continuous.
According to general theory, F is differentiable almost everywhere. Let I be the collection of all binary irrational numbers, that is, $x \in I$ if its binary expansion contains infinitely many 0 and 1 . It is a set of full measure. Therefore, the set of all binary irrational numbers at which F is differentiable is also a set of full measure. Let us denote it by J.
Claim 3: $F^{\prime}(x)=0$ for $x \in J$. First, we observe that for $x \in J$, there exist binary rational numbers α_{n}, β_{n}, where $\beta_{n}=\alpha_{n}+1 / 2^{n}$ satisfying

$$
\alpha_{n}<x<\beta_{n}
$$

for all n. Moreover,

$$
\alpha_{n}=\frac{z_{1}}{2}+\cdots+\frac{z_{n}}{2^{n}}, \quad z_{j} \in\{0,1\}
$$

and one must have either (a) $\alpha_{n}=\alpha_{n-1}, \beta_{n}=\beta_{n-1}+1 / 2^{n}$, or (b) $\alpha_{n}=\alpha_{n-1}+$ $1 / 2^{n}, \beta_{n}=\beta_{n-1}$. A review on the construction of the approximation to x by plotting the first several steps will convince you these facts.

In the case (a), we have

$$
\begin{aligned}
F\left(\beta_{n}\right)-F\left(\alpha_{n}\right) & =\frac{1}{4}\left(F\left(\alpha_{n-1}\right)+\frac{3}{4} F\left(\beta_{n-1}\right)\right)-F\left(\alpha_{n-1}\right) \\
& =\frac{3}{4}\left(F\left(\beta_{n-1}\right)-F\left(\alpha_{n-1}\right)\right)
\end{aligned}
$$

and, in the case (b),

$$
\begin{aligned}
F\left(\beta_{n}\right)-F\left(\alpha_{n}\right) & =F\left(\beta_{n-1}\right)-\left(\frac{1}{4} F\left(\alpha_{n-1}\right)+\frac{3}{4} F\left(\beta_{n-1}\right)\right) \\
& =\frac{1}{4}\left(F\left(\beta_{n-1}\right)-F\left(\alpha_{n-1}\right)\right)
\end{aligned}
$$

As F is differentiable and increasing, $F^{\prime}(x) \in[0, \infty)$. If $F^{\prime}(x)>0$, the sequence

$$
a_{n}=\frac{F\left(\alpha_{n}\right)-F\left(\beta_{n}\right)}{\beta_{n}-\alpha_{n}} \rightarrow F^{\prime}(x), \quad \text { as } n \rightarrow \infty .
$$

It follows that $a_{n} / a_{n-1} \rightarrow 1$ as $n \rightarrow \infty$. However, the relations above tell us that $a_{n} / a_{n-1}=1 / 2$ or $3 / 2$, which never converges to 1 . Hence $F^{\prime}(x)$ must vanish.

Note. This example is a special case of an example in 18.6 in [HS].

